Matematik ve Müzik

Matematik ve Müzik arasında bir ilişki var mı?

Matematiğin Müzik ile ilgili olduğunu göstermek için bu konuyu oluşturmaya karar verdik, çünkü birçok kişi müzikte Matematik olduğu gerçeğini görmezden geliyor. Belki Math’ı sevmiyorsun ama endişelenme; Her bir kavramı basit bir şekilde anlatmaya çalışacağız, sadece sese olan duyarlılığımızın beynimizdeki mantığa bağlı olduğunu bilmeniz için. Bu gerçekten ilginç, bu yüzden önyargılarını bir kenara bırak. İyi öğrenildiğinde tüm bilgiler güzeldir.

Müzik konusundaki matematik konusuna gitmeden önce, bazı temel kavramları hatırlayalım.

Müzikte Fizik

Tamam, buradaki web sitesinde ilk başlıklarda , sesin bir dalga olduğunu ve sesin frekansının müzik notunutanımlayan şey olduğunu yorumladık . Fakat frekans nedir? Bu bir tekrarlamadır. Örneğin, bir bisiklet tekerleğinin döndüğünü hayal edin. Bu tekerlek 1 saniyede bir dönüş yaparsa, bu tekerlek frekansının “saniyede bir dönüş” veya “bir Hertz” olduğunu söylüyoruz. Hertz, yalnızca bir frekans birimini temsil eden bir addır ve normal olarak “Hz” ile kısaltılır. Örneğimizin bu tekerleği saniyede 10 tur tamamlarsa, frekansı 10 Hertz (10 Hz) olacaktır.

Güzel, ama sesle bağlantı nerede? Ses bir dalgadır ve bu dalga belirli bir frekansta salınır. Bir ses dalgası bir saniyede bir salınımı tamamlarsa, frekansı 1 Hz olacaktır. Bir saniyede 10 salınımı tamamlarsa, frekansı 10 Hz olacaktır. Her frekans için farklı bir sese (farklı bir nota) sahip olacağız. Örneğin bir not, 440 Hz’lik bir frekansa karşılık gelir.

Müzikte matematik

Ve Matematik müzikte nereye girer? Bir frekans 2 ile çarpıldığında notun hala aynı olduğu görülmüştür. Örneğin, 2 = 880 Hz ile çarpılan A (440 Hz) ayrıca bir A’dır, ancak sadece bir oktavdır . Eğer hedef bir oktavı düşürmek olsaydı, sadece 2’ye bölünmesi yeterli olurdu, o zaman bir not ile onun notunun ½ arasında bir ilişki olduğu sonucuna varabiliriz.

Çok iyi, devam etmeden önce, geçmişe, Eski Yunanistan’a dönelim. O zamanlar Pisagor adında bir adam vardı ve Matematiğe (ve müziğe) gerçekten önemli keşifler yaptı. Oktavlar hakkında gösterdiğimiz şey, gerilmiş bir dizeyle “oynamayı” keşfetti. Ekstremitelerine bağlı gerilmiş bir ip hayal edin. Bu dizgiye dokunduğumuzda titrer (aşağıdaki çizime bakın):

Pisagor, bu ipi iki parçaya bölmeye karar verdi ve her ekstremiteye tekrar dokundu. Üretilen ses aynıydı, ama daha akuttu (çünkü yukarıdaki bir oktav aynı nota idi):

Pisagor orada durmadı. İp 3 parçaya bölünmüşse sesin nasıl olacağını deneyimlemeye karar verdi:

Yeni bir sesin çıktığını fark etti; öncekinden farklı. Bu sefer, yukarıdaki bir oktavla aynı nota değil, başka bir isim alması gereken farklı bir nota değildi. Bu ses, farklı olmasının yanı sıra, bir öncekiyle iyi çalıştı, kulağa hoş bir uyum yarattı, çünkü bu bölümler şimdiye kadar Matematik ilişkilerinin 1/2 ve 2/3 olduğunu gösterdi (beynimiz iyi tanımlanmış mantık ilişkilerini sever).

Böylece alt bölümler yapmaya ve sesleri matematiksel olarak ölçekler yaratan ölçekler yaratarak birleştirerek, daha sonra bu ölçekleri çalabilecek müzik aletleri yaratılmasını teşvik etti. Tonlu aralığı, örneğin, bu ses dengesiz ve gergin dikkate almak beynimizi kılan bir ilişki 32/45, karmaşık ve yanlış ilişki, faktör elde edilmiştir. Zamanla, notlar bugün bildiğimiz isimleri alıyordu.

Matematik ve müzik ölçekleri

Birçok halk ve kültür kendi müzik ölçeklerini yarattı . Buna bir örnek, Pisagor fikriyle başlayan (dizeleri kullanan) Çin halkıdır.

Uzatılmış bir dizgede C çaldılar ve daha önce gösterdiğimiz gibi bu dizgiyi 3 parçaya böldüler. Bu bölümün sonucu G notu oldu. Bu notların uyumu olduğunu fark ettim; G ile başlayan prosedürü tekrarladılar, bu ipi tekrar 3 parçaya böldüler, D notu elde ettiler. Bu not, G ve C ile hoş bir uyum gösterdi. Bu prosedür D’den başlayarak A ile sonuçlandı. A’dan başlayarak, E aldılar.

Bu ipi tekrar üç parçaya bölme prosedürünü bir kez daha tekrarladılar ve B ile sonuçlandılar, çünkü bir sorun vardı, çünkü B C ile oynandığında iyi uymuyordu (deneyin ilk notu). Aslında, bu notlar birbirlerine “yakın bir rahatsızlığa” neden olan birbirine çok yakındı.

Bu nedenle Çin, B’yi bir kenara alarak C, G, D, A ve E notlarını alarak bölümlerini tamamladı. Bu notalar, Çin Notaları için temel teşkil etti ve 5 nota ( Pentatonic ) ile ölçeklendi . Bu Pentatonik Ölçek, hoş ve ünsüz olmak için, her zaman uyum ve istikrarla bağlantılı olan Oryantal Kültürü çok iyi temsil etti.

Pentatonic Scale, yaratılışından bu yana, “ Pentatonic Scale ” başlığında söylediğimiz gibi, melodiler için iyi bir seçenek . Ama şimdi notların ve frekansların konusuna dönelim, çünkü ölçeğin 5 notunu gösterdik.

12 notun matematiği

12 nota ile çalışan batı müziği B notalarını Oryantal Kültür’ün yaptığı gibi atmadı. Batılı insanlar, C ve B notalarının birbirine yakın olduğunu gözlemledi ve daha kapsamlı bir ölçek oluşturmaya karar verdi. Bu ölçekte, tüm notlar birbiri ile aynı mesafeye sahip olmalıdır. Ve bu mesafe C ve B (bir yarı ton ) arasındaki aralık olmalıdır . Başka bir deyişle, C ve D arasında, örneğin, bir ara not bulunmalıdır, çünkü C ve D (bir ton) arasındaki mesafe C ve B mesafesinden (bir yarı ton) daha büyüktür. Bir frekans analizi yoluyla, B notundaki frekansın 1.0595 sayısı ile çarpılmasının C frekansına geleceğimiz keşfedildi.

B frekansı: 246.9 Hz

C frekansı: 261.6 Hz

B frekansını 1.0595 ile çarparak şöyle olur:

246.9 x 1.0595 = 261.6 Hz (not C).

Amaç, diğer notalarla aynı ilişkiyi (mesafeyi) korumak olduğundan, bu notu C’den sonra hangi notun geleceğini bulmak için kullanacağız. C sıklığının 1.0595 ile çarpılması:

261.6 x 1.0595 = 277.2 Hz (keskin Not C)

C keskininden sonra ne olduğunu görmek için bu prosedürü tekrarlayın:

277.2 x 1.0595 = 293.6 Hz (not D)

Bu mantığı izleyerek tüm kromatik ölçeği oluşturabileceğimize dikkat edin ! Başka bir deyişle, C sıklığını on iki kez “1.0595” sayısıyla çarptıktan sonra, C’ye geri döneceğiz. Bu, “1.0595”, 12 √2 karekökünün sonucuna karşılık geldiği için mümkündür . 12 √2 ‘nin 12 kez kendi kendine çarptığına dikkat edin ( 12 √2) 12  = 2. Ve zaten 2 ile çarpılmış bir notun yukarıda bir oktav olduğunu gördük.

Şimdi bu sayıların tesadüfen gelmediğini açıkça görebiliyoruz. Başlangıçtan bu yana amaç, ölçeği ilk notun geri döneceği şekilde 12 aynı bölüme ölçek ayırmaktı.

O böyle oldu Eşit Ilıman Ölçeği da Kromatik olarak adlandırılan çıktı.

Müzikte Logaritma

Çok fazla ayrıntıya girmeyeceğiz, ama biraz Math’ı bilenler burada 2 numaralı logaritma ile çalıştığımızı fark ettiler. Bu nedenle, piyano yapımcıları piyano gövdesinde bir logaritma grafiği oluşturduğunu Müzikal Matematik Keşfi’ne referans vermek için. Kontrol et:

Logaritma grafiği örneği:

Vücut planı:

Müzikle ilgili birçok soruya daha birçok Matematiksel açıklama var, ama onları burada göstermek için Matematikte ileri konu hakkında konuşmak gerekir, Fourier dizileri, Riemann Zeta Fonksiyonu, vb. daha derine inme

Buradaki amacımız müziğin matematiksel olarak nasıl çalıştığını ve beynimizdeki mantıksal ilişkilerin nasıl anlaşıldığını, huzur ve gerginliği yarattığını göstermekti. Açıkçası, yaklaşımı kullanarak her şeyi yaptık (yuvarlak sayılar), çünkü daha doğru bir analiz okuyucuların çoğuna sıkıcı gelecektir.

Bu konuda öğrettiğimiz her şeyi ezberlemek gerekli değildir; sadece müziğin hiçbir yerden gelmediğini düşün. Müzik, sayısal bir organizasyonun sonucudur. Bütün bunların yorumlanması, harika ve gizemli beynimiz tarafından yapılır.

Sonuç olarak, eğer bir müzisyenseniz, yani (bir şekilde veya başka bir) matematikçisiniz, çünkü müzik dinlerken hissedeceğiniz zevk duyguları bilinçaltı hesaplamaları gizler. Beyniniz hesaplamaları sever, bu bir hesaplama makinesidir! Ne kadar çok pratik yapar, müzik okur ve bilir, bu fakülte o kadar çok gelişir. Muhtemelen daha önce size büyük hisler getirmeyen şarkıları dinlerken zevk almaya başlayacaksınız.

Bunu ilk yarıyılda Fizik öğrencisiyle karşılaştırabiliriz. Modern bir Fizik kitabı okursa, ona Yunanca gibi görünür. Ona hiç zevk vermeyecek. Fakat birkaç yıl sonra iyi bir Matematik temeline sahip olacağı ve bu kitapla yeniden yüzleşeceği zaman, belki konuyu sevebilir ve hayatının geri kalanını bunun içinde geçirmek isteyebilir.

sonraki yazı